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This report extends some earlier work by the Search for Extraterrestrial Intelligence
(SETI) Science Working Group (SWG) on the derivation of spectrum analyzer thresholds
for a pulse detection algorithin based on an analysis of false-alarm rates. The algorithm
previously analyzed was intended to detect a finite sequence of i periodically spaced
pulses that did not necessarily occupy the entire observation interval. This algorithm
would recognize the presence of such a signal only if all i-received pulse powers exceeded
a threshold T(i): these thresholds were selected to achieve a desired false-alarm rate, inde-
pendent of i. To simplify the analysis, it was assumed that the pulses were synchronous
With the spectrum sample times.

This analysis extends the earlier effort to include infinite and/or asynchronous pulse
trains. Furthermore, to decrease the possibility of missing an ETI signal, the algorithm has
been modified to detect a pulse train even if some of the received pulse powers fall below
the threshold. The analysis employs geometrical arguments that make it conceptually
easy to incorporate boundary conditions imposed on the derivation of the false-alarm
rates. While the exact results can be somewhat complex, simple closed form approxima-
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tions are derived that produce a negligible loss of accuracy.

l. Introduction

Just as a flashing light commands more attention than con-
stant illumination for the same average power, a sequence of
pulses is a more likely extraterrestrial intelligence (ETI) bea-
con than a continuous wave (CW) signal. Oliver has shown that
there is a signal-to-noise-ratio (SNR) advantage in detecting
pulse trains over CW signals (Ref. 1, p. 39). Furthermore,
pulsed signals are less likely to be confused with natural phe-
nomena. So the pulse detection algorithm is an important ele-
ment of SETI.

In both the sky and target survey modes of operation, the
received signals will be processed by a multichannel spectrum
analyzer (MCSA), which generates a temporal sequence of
observed powers in a large number of contiguous frequency
bins. For real-time operation, it would be impractical to apply
an ETI detection algorithm directly to this frequency-time
matrix of analog powers. So each power is compared with a
set of thresholds to create a reduced observation space of
soft-quantized powers: the algorithms then search this simpli-
fied space for signals of interest.
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Suppose we are interested in detecting a sequence of nar-
rowband periodic pulses. For simplicity, assume we do not
have to compensate for frequency drifts, so that if one of the
pulses is observed in a particular frequency bin, subsequent
pulses will be observed in the same bin: the analysis that fol-
lows will isolate the operation of a pulse detection algorithm
on a single representative frequency cell corresponding to a
particular MCSA resolution.

The detection problem is complicated by the largely
unknown nature of the signal of interest. The only certainty
under our hypothesis is that the signal is periodic. We do not
have a priori knowledge of the received power, center fre-
quency, bandwidth, pulse duration, period, or time of occur-
rence of the first observed pulse, nor do we have statistical dis-
tributions for these parameters. We also do not know the
likelihood of observing an ETI pulse train, although the pre-
sumption is that such an event is extremely rare. Because of
this last consideration, we tend to select an algorithm that
ensures tolerable false-alarm rates, without regard for the prob-
ability of missing an ETI event: this paper adheres to that
premise.

The analysis that follows will focus on the false-alarm rate
for a particular pulse detection algorithm that searches for
patterns of { periodically spaced hits in a threshold detected
record of finite duration for a given frequency bin, where 7 is
an unknown variable. We will assume that the duration of each
pulse is no larger than the inverse resolution bandwidth, which
is the time required to generate each spectral measurement: so
each pulse affects at most two adjacent temporal observations
if it starts in the first and ends in the second, and if the pulse
duration is small enough, most of the power will impact a sin-
gle time cell. In analyzing false-alarm rates, the desired signal
is absent: it is only the internal system noise that can cause a
particular measurement to exceed the operating threshold. If
the detection algorithm demands that all i hypothetically
observed pulses cause the corresponding temporal measure-
ments to exceed a selected threshold 7(3), the likelihood of
this occurring due to noise alone decreases with i. Conversely,
if we want to maintain a desired false-alarm rate independent
of i, we must employ a sequence of thresholds {T(i)}, where
T(i) decreases with i. This last approach was adopted by
Cullers based on a preliminary false-alarm analysis for “regu-
lar” (periodic) pulses (Ref. 1, pp. 12-19).

This paper extends that earlier work, and the initial think-
ing that went into it provided a welcome opportunity for
Cullers and me to collaborate in the evolution of the SETI
pulse detection algorithm: In the course of this effort, we
agreed on some useful terminology. In particular, a “finite”
pulse train refers to a signal of limited duration that may begin
and/or end within a given observation interval, whereas an
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“infinite” pulse sequence is assumed to extend indefinitely
before and after that interval. For computational convenience
it was useful to introduce the mathematical artifice of a “‘syn-
chronous” pulse train wherein each received pulse coincides
with a spectral time cell. Of course, the probability of this
serendipitous occurrence is strictly zero, and realistically we
should consider the situation in which the pulses are “‘asyn-
chronous” with the measurement times. Cullers’ ground break-
ing analysis was restricted to the finite/synchronous category,
whereas this paper examines all four cases and ultimately
favors the more credible infinite/asynchronous assumption.

Finally, Cullers and I both recognized the need to modify
the pulse detection algorithm to allow it to indicate the recep-
tion of a sequence of i pulses even if some of those pulses do
not exceed the power threshold 7(7). This has the effect of
lowering the probability of missing a potential ETI signal at
the expense of a higher false-alarm rate. We agreed that for a
given #, the number of pulses allowed to fall below T(i) would
be kept small enough to permit the period of the detected
pulsé train to be uniquely determined.

Il. The Algorithm

As mentioned earlier, the SETI equipment uses a spectrum
analyzer to generate a frequency-time matrix of received
powers. The pulse detection algorithm investigates the
hypothesis that embedded in that data record is a sequence of
i periodically spaced pulses, where i is an unknown parameter
that in general can be any integer between 1 and the number
of time cells V. Because of the desire to process a given data
record in real time, the two-dimensional array of received
powers is soft quantized by tagging each frequency-time cell
according to the largest power threshold exceeded in the pre-
selected set {T(i)}.

To simplify the analysis, we will assume that a received
pulse train does not drift in frequency during the observation
interval, and focus on the operation of the detection algorithm
on a single frequency channel. Furthermore, although the
algorithm simultaneously searches for pulse trains with many
values of = 1, we will consider a particular value of { and
compute the corresponding 77(#) that produces a desired false-
alarm rate.

So the observation space of interest is a sequence of V spec-
tral power measurements that have been hard quantized by a
threshold 7(i). As stated earlier, we assume that the power in
each pulse is largely contained within a single time cell (this is
not meant to imply the synchronous restriction). Even within
these constraints, there are still two important degrees of free-
dom to resolve—the phase and period of the received pulse
train. The phase is defined by the integer & € [1, V], which




denotes the time cell containing the first pulse within the
observation window. In the synchronous case, the period is the
integer spacing m = 1 between cells containing consecutive
pulses. However, in the asynchronous case, the period m is
noninteger, so the second degree of freedom is defined by the
integer spacing £ = (i - 1) m between the cells containing the
first and last received pulses. Depending on whether the pulse
train is assumed to be finite or infinite, these degrees of free-
dom will have some constraints or boundary conditions. For
the four cases of interest (e.g. infinite/synchronous), the
domain of allowable degrees of freedom defines g(i) distinct
subsets of i cells within the N cell data record where the
received pulses could be located. The boundary conditions and
the parameters g(i) are derived in the next two sections.

Consider a particular group of i cells that is a member of
the subset of g({) potential pulse train locations. A very restric-
tive pulse detection algorithm might insist that the power
levels in all i cells exceed 7(7), while the remaining (V - ?) cells
fail the threshold test. While such an algorithm would have a
low false-alarm rate, it would be at the expense of a higher
probability of missing a received pulse train. A more reason-
able criterion is to declare that a sequence of i periodically
spaced pulses has been detected whenever any (i - J) of them
or more satisfy the threshold test, and allow up to a small
number K of the other (V - i) cells to exceed the power thres-
hold erroneously due to thermal noise. Of course, J and K
would be kept small enough to ensure unambiguous determi-
‘nations of 7 and m, and to maintain a sufficiently low false-
alarm rate.

To compute the false alarm probability Pp,, we assume
that the /V spectral power measurements represent internal sys-
tem noise only. The power in each cell is then a central chi-
square random variable with two degrees of freedom. If the
cell powers and the threshold 7(7) are normalized by dividing
each by the mean cell power, the probability that a given cell
erroneously satisfies the threshold test is

p = e_T(f) (1)

Then, for the modified pulse detection algorithm described
above,

3 K
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(2)
If p <<1, Pp, will be dominated by the j =J, k£ = 0 terms, so

that a good approximation that avoids having to select a
particular K is
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In the next two sections, we will compute g(¥) according to
whether the pulse train is assumed to be synchronous or
asynchronous, and finite or infinite. In all four cases, the first
degree of freedom represented by the integer location k of the
first received pulse is trivially constrained by

1 <k<N )

In the special case i = 1, only a single pulse is observed and
m cannot be determined from the available data. Then there is
only the single degree of freedom given by Eq. 4, and in all
four cases,

g(1) = N (%)

We shall now derive boundary conditions on the second
degree of freedom, and compute g(7) for i = 2.

lll. Synchronous Case

Here the second degree of freedom is the integer period m.
Since the last of the 7 pulses must lie within the & observed
cells, we must have k + (i- 1) m < N, or

m<u;
i-1

=2 (6)
for both the finite and infinite cases. The infinite assumption
further demands that the number of cells prior to the first
pulse and following the last one within the span of NV be
strictly less than the period m: thatis, k, ~ N~k —(—Dm+
1< m, or equivalently

N-k+1

m=k, ;

(7N

In the finite/synchronous case previously analyzed by
Cullers, the domain of (k,m) defined by Eqgs.4 and 6 is
illustrated in Fig. 1. Every integer pair within this triangular
domain corresponds to a distinct member of the g(i) possible
pulse train locations, so that

“ —
&) = mzzl [N- (- )m]; u= %"_—‘ll

2
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where |x denotes the integer part of x. As an approximation, if
we ignore the requirement that u be an integer and substitute
M= V- 1(E- 1) into Eq. 8, we find that g(¢) reduces to the
approximation

o) = N DW-i+2), "28(_]"1;”2) i>2
' )
N
G- 1)

4

N>>1,i

These are the same results obtained by Cullers in Ref. 1.

Note that the series summation of Eq. 8 looks like a
numerical integration of the area of the triangular domain of
(k,m) in Fig. 1. A loose approximation to g(7) is simply the
area of that triangle:

Ww-* . N

o) =y = ey (PN

(10)

In the infinite/synchronous case, the domain of (k, m) must
be modified to include the additional boundary conditions of
Eq. 7, as illustrated in Fig. 2. Let [x denote the smallest inte-
ger greater than or equal to x: then deﬁning

N+1 _|n-1
+1 i My =51 (D
allows us to write
My by
&) = E [(i+1)m-N] + E [NV~ (i- 1)m]
m=u.1 m=u2+1
= N(uy = 20, tpy - 1)
i ,
o (g = 20y + 207 - g - 43)
1 ,
+§(u1-u§+u3 +d); =2 (12)

Ignoring the integer constraints in Eq. 11, and substituting the
noninteger expressions for u,, u,, and uj into Eq. 12 yields
the approximation
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g(i)~N2+l -it-i
iG*- 1)
(13)
N2
= s N>>i
i(i2- 1)

As a check, the area of the trapezoidal domain in Fig. 2 gives
the approximation

sy = Q07 o N7,

iG*-1 i@*-1n

iIZ2L,N>>i  (14)

IV. Asynchronous Case

Now the second degree of freedom is the integer spacing £
between the cells containing the first and last received pulses.
The nominal or observed period is therefore

it

A%

,;;=.’3_ m; i
1

2 (15)

Assuming that the duration of each pulse is much smaller than
the width of each time cell, the actual locations of these pulses
can deviate from the centers of the cells containing them by
up to half a cell width in either direction. Therefore, the true,
noninteger period lies in the range

g- 1 9+ 1
N N

\U/ (16)

- 1
|m m|<l,~1

which becomes negligible for large 7.
In both the finite and infinite cases, clearly k + L <N, or
e<N-k (17)

Because of the uncertainty as to the true value of 1, we shall
use the approximate boundary modifications

k, N-k—-R+ 1K

for the infinite case, which implies that

2> (i - l)k( )(N k+1) i22 (18)




The domains for both sets of boundary conditions are
illustrated in Figs. 3 and 4. Unlike the synchronous cases,
there is not a one-to-one correspondence between integer pairs
(k, £) in these domains and distinct subsets of i cells containing
the received pulses. Although the cell locations of the first and
last pulses are fixed for a given (k, £), because the pulse
sequence is asynchronous with the time cells, each of the
(- 2) intermediate pulses can often occupy one of two adja-
cent cells. For example, if i = 3 and £ is an odd integer, #2is a
half-integer, and the middle pulse could lie in either the
[+ (8- 1)/2]™ cell or the [k + (R + 1)/2]™ cell: under these
conditions, a particular integer pair (%, £) in the domain (with &
odd) corresponds to two distinct patterns of 7 cells. On the
other hand, if /=3 and ¢ is even, each integer pair represents a
single pattern of 7 cells. If £ is equally likely to be even or odd,
on the average each (k, ) represents 3/2 distinct i -cell subsets
of the N observations. Denoting the number of integer pairs
within an asynchronous domain by f(i), we can representthe
average number of i-cell pulse location patterns by

8(0)=c(@) (@) (19)

where ¢(2)=1 and we have argued above that ¢(3) =3/2. A
more rigorous derivation of ¢() is given in the Appendix; we
show that

c(®)
1.5
3
5.25

13

17.5
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There remains the computation of f(i). In the finite case of
Fig. 3,

N-1 1
f@) = 3 -9 = SNW-1); i>2
L=1 20

2
g%; N>>1

which is independent of i. In the infinite case, remembering
that the lower boundaries in the domain of Fig. 4 are approxi-
mate,

A N-1
i) = Z [(%) Q—N]+ Z V-9
2=\

1 Q=?\2+1

i+1

= (-2, + 1)[—%(ﬁ)(>\2 +>\1)—N]

+%(N— MWV, -1y P32 (21a)
where
_\fi-1
A = (—Hl)(I\Hl)
_|{i-1
A, = (-l“) N (21b)

Ignoring the integer restrictions on A, and A,, Eq. 21 simpli-
fies to
N N+
() =~ ;
i(i+1)

N? .
REDE N>>i (22)
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V. Example

Suppose N = 100 and we want to determine a set of
thresholds {7(:)} such that P;, = 2 X 10~12 independent of
i. We will assume that the pulse detection algorithm is looking
for infinite/asynchronous pulse trains, and we will allow J =1
of the 7 pulses to fail the threshold test for i = 4, keeping J =0
for smaller i. From Egs. 3, 5, 19, and 22, we have

N-1

P, = NeTO [1- T =g
|22 _enre @V
P, = (@) [z'(z'+ 1)](])6 i [1 -e 1] ,

i=2 (23)

The resulting thresholds, normalized in terms of the mean cell
power, are

T(@)
31.5

17.2 J=20
11.4

11.9
9.0
7.3
6.1

~.

J=1

N Oy WM
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VL. Postscript

This work was recently presented at the SETI SWG meeting
at Ames Research Center. It became evident from the audi-
ence’s questions that the actual operation of the pulse detec-
tion algorithm using a superposition of thresholds {7'(}):
1,2, - - -} was not clear, To alleviate this problem, the synchro-
nous example illustrated in Fig. 5 was used. The example
considers a single data record of N =25 time cells for an
arbitrary frequency bin. The algorithm first searches for a
single pulse exceeding the power threshold 7'(1), then for two

cell powers exceeding T(2), then for three periodically spaced
pulses exceeding T(3), and so on. This is a special case of the
algorithm described earlier with J = 0.

In the particular example of Fig. 5, there are no cell powers
that exceed 7'(1), only one exceeds 7(2), and, although three
do exceed T(3), they are not periodically spaced; so the
algorithm does not see a sequence of / periodic pulses for
1 <i< 3. However, six cell powers exceed T'(4), including the
periodic sequence consisting of cells 4, 10, 16, and 22, so the
algorithm flags that 4-cell subset.
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Fig. 1. Domain of (k, m) for finite/synchronous case, where | = 2 Fig. 3. Domain of (k, ¢) for finite/asynchronous case, where i = 2
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Fig. 2. Domain of (k, m) for infinite/synchronous case, where j = 2 Fig. 4. Domain of (k, ¢) for infinite/asynchronous case, where i = 2
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T(4) 6 HITS, INCLUDING 4 PERIODIC
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Fig. 5. Example of sequential investigation of hypothesis that a sequence of i periodic pulses is present in data

record of N = 25 time cells, i = 1, 2, . . . . The (J = O) algorithm demands that / periodically spaced cell powers exceed
T(i). The synchronous case is assumed
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Appendix

Computation of ¢(i) for Asynchronous
Pulse Trains

Consider a sequence of { periodic pulses received within a
data record of N time cells. The duration of each pulse is
assumed to be much smaller than a cell interval, so we can
essentially regard it as occuring at a single point in time.
Furthermore, all time measurements below are in time cell
units, so that the normalized sample times are the integers
1,2, +,N. In the asynchronous case, the pulse period m and

the times of occurrence of the pulses x,, x,,---, x; are
noninteger. The j® pulse is receivedin the y;h cell, where
= ) 1

and p; is integer. In Section IV, we defined the observed
period (Eq. 15)

~"_ 8T
(T B (42)
whereas the actual period is
X, =X A -A
- i 1= -~ I 1 R
m 1 m+ 1 (A-3)

which satisfies Eq. 16.

For particular first and last observed pulse locations, y, and
Y which fix 8=y, - y,, we want to investigate the range of
observed intermediate pulse locations y,, y3, -+, ¥,_;, for
i = 3. The actual noninteger location of the jt intermediate
pulse (2 <\j < i~ 1) satisfies

X; =X, +(G-Dm
)
i

1§

-1
—~ (A4)

y1+§{—L1A1+( )(Q+A1)

If we denote

‘and 2, =@ mod (i - 1), then £= 2, (1~ 1)+ ¢, , where & and
%, are integers and 0 < £, <i—2. In the analysis that follows,
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we will assume that £, is uniformly likely to assume any value
within its range. We can express Eq. A4 as

integer noninteger, zi

Since y, is the integer closest to x;, the range of z; determines
the number of possible y]-’s. Let y= i ¥y, ¥y and D
denote the number of distinct J’s consistent with the given
values of 4, y,, ¥, Then D equals the number of possible y,’s
times the number of possible y,’s times - - - times the number
of possible y;_; s, and

c() = E [D] (A-6)

where the expectation is over the discrete uniform random
variable 2,. Since |A, |, [4;/< 1/2, and A, and A, are inde-
pendent parameters,

(A-7)

If

i—-1
e
is an integer, which is always true when £, = 0, then there is
only one possible value of ¥

_ , j-1
Yy —y1+20(]_1)+(l-:_1)21

= /-1
"3"1+(z'—1)IZ

(A-8)




However, if So, for a given 7 and R, Dis simply 2 raised to the number of

noninteger members of the set

j=1
(=15

%(—ﬁ })21 2<)<i- 1};
is noninteger, then y; can have one of two possible values:
_ , i-1 in particular
Y=Y t8 (J- Dt (~—l._ 1)21
(A9) 1<D<2? (A-10)
, -1
Yy =y v G-+ (-ﬁ._—l-)!zl +1

Table A-1illustrates the calculation of ¢(7) for i > 3.
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Table A-l. Calculation of parameter c(i)

, j-1 .
2 1 ] (—2—_—1‘) Q 1 D c(@)

0 2 0 1 1.5
1 2 noninteger 2

2 0
0 3 0 1
1 2 nonfnteger 4 3

3 noninteger
5 2 nonfnteger 4

3 noninteger

2 0
0 3 0 1

4 0

2 noninteger
1 3 noninteger 8

4 noninteger

2 noninteger 5.25
2 3 1 4

4 noninteger

2 noninteger
3 3 noninteger 8

4 noninteger




